Solvable subgroups in prime rings
نویسندگان
چکیده
منابع مشابه
Localization at prime ideals in bounded rings
In this paper we investigate the sufficiency criteria which guarantee the classical localization of a bounded ring at its prime ideals.
متن کاملSeparability of Solvable Subgroups in Linear Groups
Let Γ be a finitely generated linear group over a field of characteristic 0. Suppose that every solvable subgroup of Γ is polycyclic. Then any solvable subgroup of Γ is separable. This conclusion is false without the hypothesis that every solvable subgroup of Γ is polycyclic.
متن کاملON FINITENESS OF PRIME IDEALS IN NORMED RINGS
In a commutative Noetherian local complex normed algebra which is complete in its M-adic metric there are only finitely many closed prime ideals.
متن کاملOn centralizers of prime rings with involution
Let $R$ be a ring with involution $*$. An additive mapping $T:Rto R$ is called a left(respectively right) centralizer if $T(xy)=T(x)y$ (respectively $T(xy)=xT(y)$) for all $x,yin R$. The purpose of this paper is to examine the commutativity of prime rings with involution satisfying certain identities involving left centralizers.
متن کاملPrime rings with PI rings of constants
It is shown that if the ring of constants of a restricted differential Lie algebra with a quasi-Frobenius inner part satisfies a polynomial identity (PI) then the original prime ring has a generalized polynomial identity (GPI). If additionally the ring of constants is semiprime then the original ring is PI. The case of a non-quasi-Frobenius inner part is also considered.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1981
ISSN: 0002-9939
DOI: 10.1090/s0002-9939-1981-0614873-9